We can rewrite Σn=144cos n as Σn=144cos (45-x). (This just reverses the direction of the addends.) We then use the cosine angle sum identity to rewrite cos (45-x) as (cos 45)(cos x) + (sin 45)(sin x). Since cos 45 = sin 45 = 1/
√ 2
, we can rewrite this as 1/
√ 2 (cos x + sin x).
This gives us:
Σn=144cos n = 1/
√ 2 Σn=144(cos n + sin n) = 1/
√ 2(Σn=144cos n) + 1/
√ 2(Σn=144sin n).
Thus:
(1 - 1/
√ 2)Σn=144cos n = 1/
√ 2(Σn=144sin n)
(Σn=144cos n)/(Σn=144sin n) = 1/
√ 2 /(1 - 1/
√ 2) = 1 + √ 2
No comments:
Post a Comment