Friday, July 6, 2012

Solution #18

We can rewrite Σn=144cos n as Σn=144cos (45-x). (This just reverses the direction of the addends.) We then use the cosine angle sum identity to rewrite cos (45-x) as (cos 45)(cos x) + (sin 45)(sin x). Since cos 45 = sin 45 = 1/ 2  , we can rewrite this as 1/ 2 (cos x + sin x).

This gives us:

Σn=144cos n = 1/ 2 Σn=144(cos n + sin n) = 1/ 2(Σn=144cos n) + 1/ 2(Σn=144sin n).

Thus:

(1 - 1/ 2)Σn=144cos n = 1/ 2(Σn=144sin n)

n=144cos n)/(Σn=144sin n) = 1/ 2 /(1 - 1/ 2) = 1 +  2

No comments:

Post a Comment